定积分存在定理是什么 定积分的几何意义图解

伞下的恋人2023-03-23 21:25:081917

定积分的定理(Theorem,定积分存在定理和不定积分存在定理分别是什么?定积分存在定理是有限个什么类的间断点?定积分存在定理是什么?定积分存在条件,定积分定义是什么?

本文导航

积分重要公式的推导

定理1:设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。定理2:设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。定理3:设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。 定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。这个重要理论就是大名鼎鼎的牛顿-莱布尼兹公式,它的内容是:如果f(x)是[a,b]上的连续函数,并且有F′(x)=f(x),那么用文字表述为:一个定积分式的值,就是原函数在上限的值与原函数在下限的值的差。正因为这个理论,揭示了积分与黎曼积分本质的联系,可见其在微积分学以至更高等的数学上的重要地位,因此,牛顿-莱布尼兹公式也被称作微积分基本定理。

定积分的几何意义图解

定积分是积分的一种,是函数f(x)在区间[a,b]上积分和的极限。不定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分。

一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。

扩展资料

根据牛顿-莱布尼兹公式,许多函数的定积分可以通过计算不定积分来简单计算。这里要注意不定积分和定积分的关系:定积分是一个数,不定积分是一个表达式,它们只是一个数学计算关系。

对于连续函数必须有定积分和不定积分;如果在有限区间[a,b]中只有有限个间断点且函数是有界的,则存在定积分;如果有跳跃点、可移动点和无限个间断点,原函数不存在,即不定积分不存在。

参考资料来源:百度百科-定积分

参考资料来源:百度百科-不定积分

定积分中值定理解决什么问题

可去间断点 跳跃间断点都是第一类间断点

就是函数左右极限相等者但函数值没意义称可去间断点,不相等者称为跳跃间断点

定积分过程中常用公式

也许这个是你想要的:

紧集上的连续函数必定可积.

为什么定积分麻烦

定积分存在的充分条件:函数有界 且有有限个间断点,函数连续,函数单调有界。

若F′(x)=f(x),那么[F(x)+C]′=f(x)。(C∈RC为常数)。也就是说,把f(x)积分,不一定能得到F(x),因为F(x)+C的导数也是f(x)(C是任意常数)。所以f(x)积分的结果有无数个,是不确定的。

黎曼积分

定积分的正式名称是黎曼积分。用黎曼自己的话来说,就是把直角坐标系上的函数的图象用平行于y轴的直线把其分割成无数个矩形,然后把某个区间[a,b]上的矩形累加起来,所得到的就是这个函数的图象在区间[a,b]的面积。实际上,定积分的上下限就是区间的两个端点a,b。

以上内容参考:百度百科-定积分

定积分为什么有范围

定积分是积分的一种,是函数f(x)在区间[a,b]上积分和的极限。

一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。

一般定理

定理1:设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。

定理2:设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。

定理3:设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。

定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。

扫描二维码推送至手机访问。

版权声明:本文由尚恩教育网发布,如需转载请注明出处。

本文链接:https://www.shane-english.com.cn/view/79876.html

标签: 课程
分享给朋友:

“定积分存在定理是什么 定积分的几何意义图解” 的相关文章

线性代数特征值是什么 线性代数特征向量与秩的关系

线性代数中“特征值”的含义是什么?线性代数中,实特征值是什么意思?线性代数 特征值,线性代数 关于特征值问题,线性代数特征值的定义与性质,线性代数里的特征向量和特征值的含义。本文导航线性代数特征值对照表线性代数特征值与特征向量详解线性代数特征值怎么快速求线性代数特征向量最后结果线性代数向量特征值怎么...

怎么理解数学中的级数 高等数学中的级数和高中学的数列是不是一样的啊?级数不就是前n项求和么?

怎么理解数学中的级数 高等数学中的级数和高中学的数列是不是一样的啊?级数不就是前n项求和么?

高等数学中的级数和高中学的数列是不是一样的啊?级数不就是前n项求和么?数学什么是级数?数学中什么叫做p级数?怎么理解数学中的级数?本文导航高等数学中的级数和高中学的数列是不是一样的啊?级数不就是前n项求和么?数学什么是级数数学中什么叫做p级数怎么理解数学中的级数?高等数学中的级数和高中学的数列是不是...

迫敛定理是什么 哑变量系数说明什么

迫敛定理是什么 哑变量系数说明什么

利用迫敛性定理求数列极限的关键是什么?迫敛准则是什么?如何通俗的理解收敛数列的迫敛性?「夹逼定理」的定义是什么,有哪些应用场景?迫敛性定理的等于号可去掉吗?迫敛性的严格小于号可以变成小于嘛。本文导航求数列极限的几种典型方法发散加收敛等于什么怎么判断是收敛数列还是发散数列夹逼定理常用公式高斯公式正负号...

三元函数间断点怎么求 函数的间断点怎么求?

函数间断点怎么求?【高数】?函数间断点怎么求?怎么样求函数的间断点?函数的间断点怎么求?高等数学多元函数求间断点。本文导航函数间断点怎么求?【高数】函数的间断点怎么判断怎么样求函数的间断点?函数的间断点怎么求?高等数学多元函数求间断点函数间断点怎么求?【高数】1、一般人造函数,多是些分段函数、抽象函...

导数的介值定理是什么 介值定理和夹逼定理的区别

导数的介值定理是什么 介值定理和夹逼定理的区别

导数介值定理与达布定理有何关系,什么是介值定理?导数介值定理和连续函数介值定理的异同是是什么啊?张宇为什么讲导数介值定理?介值定理定义是什么?本文导航导数特殊值公式推导介值定理和夹逼定理的区别单调区间与导数关系如何通俗地理解导数介值定理为什么要求开区间导数特殊值公式推导导数介值定理就是达布定理,两者...

怎么证明连续的函数不可导 如何证明函数在一个点连续不连续 可导不可导

怎么证明连续的函数不可导 如何证明函数在一个点连续不连续 可导不可导

函数连续但不可导怎么证明?如何用定义证明连续不一定可导?如何证明函数在一个点连续不连续 可导不可导?怎么证明可导就连续,连续不 一定可导?让我看懂?连续不一定可导的例子有哪些,可导一定连续 连续未必可导 怎么证明?本文导航函数连续但不可导怎么证明如何用定义证明连续不一定可导如何证明函数在一个点连续不...

发表评论

访客

◎欢迎参与讨论,请在这里发表您的看法和观点。